Helmholtz Imaging Projects


Helmholtz Imaging Projects aim to initiate cross-cutting research collaborations and identify innovative research topics in the field of imaging and data science.

Funds for Helmholtz Imaging Projects are annually granted to cross-disciplinary research teams for collaborative mid-term projects.

Ideally, Helmholtz Imaging Projects are co-created with users and non-academic stakeholders to ensure the quick adoption of results.

Funding for the first Helmholtz Imaging projects started in December 2020. Many teams have since begun work on major challenges and pressing issues facing society to develop sustainable solutions for tomorrow and beyond.

Discover these outstanding and fascinating research projects with us or become a part of Helmholtz Imaging Projects and apply for your own project. The new call will be published in spring 2024. Stay tuned!

Helmholtz Imaging Projects – Project overview


Image of HI Project "3DforestSIF"
 

3DforestSIF

Understanding the solar-induced fluorescence (SIF) signal of natural, complex tree canopies

3DforestSIF seeks to correct airborne solar-induced fluorescence (SIF) data from forests for canopy structural and illumination effects, providing valuable insights for the early detection of forest stress.

Decorative image, HI AIOrganoid
Image: Xun Xu, Hereon

AIOrganoid

Artificial Intelligence Assisted-Imaging for Creating High-yield, High-fidelity Human Lung Organoid

AIOrganoid will apply cutting-edge imaging techniques and develop novel AI-based solutions to facilitate human lung organoid formation with high yield and fidelity, bridging the gap between cell biology and computational imaging.

 

AsoftXm

Advanced Soft-X-Ray Microscopy Solutions

The project aims to develop a method that will speed up the analysis of diffraction patterns that arise in UV and soft X-ray light microscopy, so that the structure of the studied sample can be calculated more efficiently. The method could make the three-dimensional study of nanomaterials considerably easier. There are times when researchers need […]

Decorative image, HI AutoCoast
 

AutoCoast

Automatic detection of coastline change and causal linkage with natural and human drivers

Coastal erosion enhanced by climate change has become an increasing global threat, which requires rapid detection and reliable risk assessment. AutoCoast aims to provide advanced and reliable remote sensing-based AI tools to quantify coastline change rate at high-resolution and unravel the linkage between coastline change rate and natural and anthropogenic drivers at regional to global scale.

Image: Paul Kamm, Helmholtz-Zentrum Berlin

Avanti

X-ray tomoscopy of dynamic manufacturing processes

How can the manufacturing processes of materials be mapped at the smallest level? How do you train an artificial intelligence to analyze these processes automatically? That’s the focus of the Avanti project, which aims to improve X-ray tomoscopy – the imaging and quantification of three-dimensional images of very fast-moving processes.

Decorative image, HI BENIGN
 

BENIGN

Biocompatible and Efficient Nanocrystals for Shortwave Infrared Imaging

The BENIGN project aims to enable non-invasive molecular imaging with cellular resolution in vivo at depths of several millimeters. This will be achieved using light from the shortwave infrared (SWIR) range (1000-2000 nm), which has less scattering and autofluorescence compared to the visible and near-infrared spectral range. Bright and targeted imaging agents are needed to fully exploit this range. The project will develop a new approach using lanthanide-based core-shell structures that emit light in the 1500-2000 nm range.

Visual to illustrate HI Project BrainShapes
 

BrainShapes

Laplace-Beltrami shape descriptors of brain structures: Comparative optimization and genetic dissection

The project explores the 3D structure of the human brain by creating a digital ‘map’ of the brain and examining its unique genetic properties, potentially linking genetic variations to brain disorders.

Decorative image with blue, green, pink and yellow colors
 

BRLEMM

Breaking resolution limit of electron microscopy for magnetic materials

A new method will make it possible to take images of the magnetic properties of materials under the electron microscope and to correlate these properties with their atomic structure. In order to achieve high resolution, a special algorithm must be developed to compute the magnetic properties from the microscope data.

Image of HI Project "CLARITY"
 

CLARITY

CineMR-guided ML-driven Breathing Models for Adaptive Radiotherapy

Dose-escalated radiotherapy of lung cancers requires precise monitoring of lesions and nearby organs at risk. Current methods are able to track ultra-central lesions but neglect their deforming vicinity, risking unacceptable toxicity to aortico-pulmonary structures. AI-based anomaly detection and generative AI models can address both requirements in real-time.

Decorative image, HI Deep4OM
Image: Hailong He, Helmholtz Munich

Deep4OM

Deep learning powered optoacoustic mesoscopy for non-invasive diagnostics of skin diseases

Deep4OM aims to develop a deep learning-based framework for optoacoustic mesoscopy image analysis, enabling quantification of human skin biomarkers for non-invasive skin disease diagnosis. Deep4OM has the potential to change the landscape of non-invasive skin imaging, and could significantly promote the diagnostic and prognostic applications of RSOM in clinical routine.

Decorative image, HI DIPLO
 

DIPLO

Paving the way from in situ plankton image data to a Digital Twin Ocean

This project will develop a user-friendly software platform to analyze plankton images independent of the instrument with which images were collected. This will help to compare data and create a common database, which is a critical step towards an image-based ecosystem component of a “Digital Twin Ocean”.

Decorative image, HI EMSIG
Image: Johannes Seiffarth, FZ Jülich

EMSIG

Event-driven Microscopy for Smart Microfluidic Single-cell Analysis

Microfluidic live-cell imaging (MLCI) unlocks spatio-temporal insights into population heterogeneity emerging from a single cell. EMSIG brings smart live-event detection capabilities to MLCI to facilitate the adaptive optimization of biological event resolution and autonomously counteracting deteriorating image qualities.

Visual for HI Project "FAST EMI"
 

Fast-EMI

Deep-learning assisted fast in situ 4D electron microscope imaging

A novel imaging approach combining electron microscopy and deep learning has been established. This method enables adaptive tracking of atomic defects, accelerating material development for the energy transition.

Decorative image, HI HighLine
 

HighLine

High Image Quality for Lines in MRI: From Roots to Angiograms

MR images of roots and vessels are very similar: both display thin, line-like objects. The aim of the project is to increase image quality of both kind of MR data by exploiting their similarity. HighLine aims at obtaining high quality images in reduced scan time to lower patient burden and increase patient and plant throughput by adapting state-of-the-art 3D image enhancement methods, and developing new deep-learning based methods.

 

HIT Permafrost

The Hidden Image of Thawing Permafrost

The project aims to develop a method for determining just how extensively thaw processes have already progressed in permafrost regions. The machine learning approach to be developed will be used to analyse radar images from aircraft in order to learn more about the properties of the subsurface permafrost.