Projects


With our Helmholtz Imaging Projects, Helmholtz Foundation Model Initiative (HFMI) and third-party funded projects, we aim to initiate cross-cutting research collaborations and identify innovative research topics in the field of imaging and data science.

Helmholtz Imaging offers a funding line of Helmholtz Imaging Projects, striving to seed collaborations between centers and across research fields. They are a strong incentive to enable interdisciplinary collaboration across the Helmholtz Association and an incubator and accelerator of the Helmholtz Imaging network. 

In addition to our Helmholtz Imaging Projects, the Helmholtz Imaging team has secured external funding for third-party projects contributing their knowledge and expertise on cutting-edge imaging methodology. 

Join us in unlocking the limitless potential of Helmholtz Imaging!

The next call for Helmholtz Imaging Projects will open in spring 2025. Stay tuned! Find out more about the project call in this summary.

Helmholtz Imaging Projects


Image: DLR

TerraByte-DNN2Sim

On the trail of the mystery of the laws of calving

Researchers still face a mystery when it comes to the laws by which glaciers calve. This project aims to use satellite imagery, artificial intelligence, mathematical optimisation and a new data processing pipeline to track the movements of glacier fronts in Antarctica to get closer to solving the mystery.
Decorative image, HI ImageTox
Image: Jonas Baumann, HIPS

ImageTox

Automated image-based Detection of Early Toxicity Events in Zebrafish Larvae

ImageTox wants to establish an automated image-based system to assess zebrafish larval development. This will allow for a fast and unbiased evaluation of pathophysiological events during toxicological studies. To achieve this, the imaging process has to be optimized and a reliable model for sequence recognition based on deep learning has to be developed.
Image of HI Project "3DforestSIF"
 

3DforestSIF

Understanding the solar-induced fluorescence (SIF) signal of natural, complex tree canopies

3DforestSIF seeks to correct airborne solar-induced fluorescence (SIF) data from forests for canopy structural and illumination effects, providing valuable insights for the early detection of forest stress.

Helmholtz Foundation Model Initiative (HFMI) Projects


Image: NicoElNino on Shutterstock

The Human Radiome Project (THRP)

The Human Radiome Project (THRP) aims to drive a paradigm shift in medical research, providing novel insights into human health and disease through the power of AI. By integrating diverse radiological data, it seeks to enable groundbreaking advancements in personalized medicine, enhancing diagnostic accuracy and improving patient care.
decorative image
Image: NicoElNino on Shutterstock

Synergy Unit

The Synergy Unit amplifies the Helmholtz Foundation Model Initiative's impact by developing AI principles for diverse fields. Collaborating with HFMI projects, it focuses on knowledge sharing, community building, and representation to ensure the initiative's lasting influence.
Microcosmos of the Ocean by Klas Ove Möller, Hereon
Image: NicoElNino on Shutterstock

AqQua

AqQua aims to build the first foundational pelagic imaging model using billions of aquatic images worldwide. These images, spanning species from plankton, will help an AI classify species, extract traits, and estimate carbon content, offering key insights into biodiversity, ecosystem health, and the biological carbon pump's role in climate regulation.

Third-Party Projects


Decorative image
 

SFB Transregio 154 – C06: Transport metrics for analysis and optimization of network problems

SFB TRR 154 is a project of the German Research Foundation (DFG) and combines integer-continuous methods, model adaptation, and numerical simulation, to analyze and optimize gas markets, infrastructure, and control of networks. The third funding period specifically focuses on the transition from natural gas to hydrogen.
Decorative image
 

Bayesian Computations for Large-scale (Nonlinear) Inverse Problems in Imaging

During research stays with the collaborating group at Caltech, we aim to investigate various aspects of statistical inverse problems. This includes inquiries into particle- and PDE-based sampling methods, as well as robust regularization using neural networks.
Decorative image
 

Deep Learning based Regularization for Inverse Problems

This project aims to investigate the construction of regularization methods for ill-posed inverse problems based on deep learning and their theoretical foundations. Specific objectives include the development of robust and interpretable results, requiring the initial development of new concepts of robustness and interpretability in this context.