Projects


With our Helmholtz Imaging Projects and third-party funded projects, we aim to initiate cross-cutting research collaborations and identify innovative research topics in the field of imaging and data science.

Helmholtz Imaging offers a funding line of Helmholtz Imaging Projects, striving to seed collaborations between centers and across research fields. They are a strong incentive to enable interdisciplinary collaboration across the Helmholtz Association and an incubator and accelerator of the Helmholtz Imaging network. 

In addition to our Helmholtz Imaging Projects, the Helmholtz Imaging te am has secured external funding for third-party projects contributing their knowledge and expertise on cutting-edge imaging methodology. 

Join us in unlocking the limitless potential of Helmholtz Imaging!

The next call for Helmholtz Imaging Projects will open in spring 2025. Stay tuned!

Helmholtz Imaging Projects


 

SyNaToSe

Leveraging Cross-Domain Synergies for Efficient Machine Learning of Nanoscale Tomogram Segmentation

The aim is to develop an adaptable algorithm that can be used to perform different tasks in data and image analysis without needing to be trained with new, laboriously annotated images for each separate task.
Decorative image, HI ImageTox
Image: Jonas Baumann, HIPS

ImageTox

Automated image-based Detection of Early Toxicity Events in Zebrafish Larvae

ImageTox wants to establish an automated image-based system to assess zebrafish larval development. This will allow for a fast and unbiased evaluation of pathophysiological events during toxicological studies. To achieve this, the imaging process has to be optimized and a reliable model for sequence recognition based on deep learning has to be developed.
Decorative image with blue, green, pink and yellow colors
 

BRLEMMM

Breaking resolution limit of electron microscopy for magnetic materials

A new method will make it possible to take images of the magnetic properties of materials under the electron microscope and to correlate these properties with their atomic structure. In order to achieve high resolution, a special algorithm must be developed to compute the magnetic properties from the microscope data.

Third-Party Projects


Decorative image
 

SFB Transregio 154 – C06: Transport metrics for analysis and optimization of network problems

SFB TRR 154 is a project of the German Research Foundation (DFG) and combines integer-continuous methods, model adaptation, and numerical simulation, to analyze and optimize gas markets, infrastructure, and control of networks. The third funding period specifically focuses on the transition from natural gas to hydrogen.
Decorative image
 

Bayesian Computations for Large-scale (Nonlinear) Inverse Problems in Imaging

During research stays with the collaborating group at Caltech, we aim to investigate various aspects of statistical inverse problems. This includes inquiries into particle- and PDE-based sampling methods, as well as robust regularization using neural networks.
Decorative image
 

Foundations of Supervised Deep Learning for Inverse Problems

Recently, deep learning methods have excelled at various data processing tasks including the solution of ill-posed inverse problems. The goal of this project is to contribute to the theoretical foundation for truly understanding deep networks as regularization techniques which can reestablish a continuous dependence of the solution on the data.