Projects


With our Helmholtz Imaging Projects and third-party funded projects, we aim to initiate cross-cutting research collaborations and identify innovative research topics in the field of imaging and data science.

Helmholtz Imaging offers a funding line of Helmholtz Imaging Projects, striving to seed collaborations between centers and across research fields. They are a strong incentive to enable interdisciplinary collaboration across the Helmholtz Association and an incubator and accelerator of the Helmholtz Imaging network. 

In addition to our Helmholtz Imaging Projects, the Helmholtz Imaging te am has secured external funding for third-party projects contributing their knowledge and expertise on cutting-edge imaging methodology. 

Join us in unlocking the limitless potential of Helmholtz Imaging!

The next call for Helmholtz Imaging Projects is open! Apply by July 30, 2024.

Helmholtz Imaging Projects


Decorative image, HI DIPLO
 

DIPLO

Paving the way from in situ plankton image data to a Digital Twin Ocean

This project will develop a user-friendly software platform to analyze plankton images independent of the instrument with which images were collected. This will help to compare data and create a common database, which is a critical step towards an image-based ecosystem component of a “Digital Twin Ocean”.
 

NImRLS

Neuroimaging Biomarkers for Restless Leg Syndrome

The aim is to develop a software solution that can analyse enormous amounts of data on tens of thousands of subjects from large-scale health studies. Using restless leg syndrome as an example, genomic data will be combined with neuroimaging data in order to identify new biomarkers with the help of machine learning methods.
 

Hyper 3D-AI

Artificial Intelligence for 3D multimodal point cloud classification

The aim is to develop an artificial intelligence that can achieve the fusion of two-dimensional data with three-dimensional information. Based on this, the software would simultaneously be able to recognise image characteristics as well as the spatial relationships between different objects.

Third-Party Projects


Decorative image
 

Deep Learning based Regularization for Inverse Problems

This project aims to investigate the construction of regularization methods for ill-posed inverse problems based on deep learning and their theoretical foundations. Specific objectives include the development of robust and interpretable results, requiring the initial development of new concepts of robustness and interpretability in this context.
Decorative image
 

Foundations of Supervised Deep Learning for Inverse Problems

Recently, deep learning methods have excelled at various data processing tasks including the solution of ill-posed inverse problems. The goal of this project is to contribute to the theoretical foundation for truly understanding deep networks as regularization techniques which can reestablish a continuous dependence of the solution on the data.
Decorative image
 

SFB Transregio 154 – C06: Transport metrics for analysis and optimization of network problems

SFB TRR 154 is a project of the German Research Foundation (DFG) and combines integer-continuous methods, model adaptation, and numerical simulation, to analyze and optimize gas markets, infrastructure, and control of networks. The third funding period specifically focuses on the transition from natural gas to hydrogen.