Projects


With our Helmholtz Imaging Projects and third-party funded projects, we aim to initiate cross-cutting research collaborations and identify innovative research topics in the field of imaging and data science.

Helmholtz Imaging offers a funding line of Helmholtz Imaging Projects, striving to seed collaborations between centers and across research fields. They are a strong incentive to enable interdisciplinary collaboration across the Helmholtz Association and an incubator and accelerator of the Helmholtz Imaging network. 

In addition to our Helmholtz Imaging Projects, the Helmholtz Imaging te am has secured external funding for third-party projects contributing their knowledge and expertise on cutting-edge imaging methodology. 

Join us in unlocking the limitless potential of Helmholtz Imaging!

The next call for Helmholtz Imaging Projects will open in spring 2025. Stay tuned!

Helmholtz Imaging Projects


Decorative image, HI AIOrganoid
Image: Xun Xu, Hereon

AIOrganoid

Artificial Intelligence Assisted-Imaging for Creating High-yield, High-fidelity Human Lung Organoid

AIOrganoid will apply cutting-edge imaging techniques and develop novel AI-based solutions to facilitate human lung organoid formation with high yield and fidelity, bridging the gap between cell biology and computational imaging.
Hyperspectral data cube
Image: Aaron Christian Banze

HYPER-AMPLIFAI

Advancing Visual Foundation Models for Multi-/Hyperspectral Image Analysis in Agriculture/Forestry

The project aims to make advanced AI models accessible for Hyperspectral Earth Observation, reducing computational demands, and improving environmental assessments through user-friendly interfaces.
Image of HI Project "X-BRAIN"
Image: X-BRAIN

X-BRAIN

Cross-modality representation learning for brain analysis and data integration

This project aims to develop AI methods that support the integration of multimodal imaging data into human brain atlases, thereby advancing the analysis of brain structure in both health and disease.

Third-Party Projects


Decorative image
 

Bayesian Computations for Large-scale (Nonlinear) Inverse Problems in Imaging

During research stays with the collaborating group at Caltech, we aim to investigate various aspects of statistical inverse problems. This includes inquiries into particle- and PDE-based sampling methods, as well as robust regularization using neural networks.
Decorative image
 

SFB Transregio 154 – C06: Transport metrics for analysis and optimization of network problems

SFB TRR 154 is a project of the German Research Foundation (DFG) and combines integer-continuous methods, model adaptation, and numerical simulation, to analyze and optimize gas markets, infrastructure, and control of networks. The third funding period specifically focuses on the transition from natural gas to hydrogen.
Decorative image
 

QGRIS: Quantitative Gamma-Ray Imaging System

Compton cameras are used for the radiological characterization of nuclear power plants. In this project, a suitable camera system is designed, and the associated algorithms for image reconstruction and nuclide characterization are implemented as user software.