Projects


With our Helmholtz Imaging Projects, Helmholtz Foundation Model Initiative (HFMI) and third-party funded projects, we aim to initiate cross-cutting research collaborations and identify innovative research topics in the field of imaging and data science.

Helmholtz Imaging offers a funding line of Helmholtz Imaging Projects, striving to seed collaborations between centers and across research fields. They are a strong incentive to enable interdisciplinary collaboration across the Helmholtz Association and an incubator and accelerator of the Helmholtz Imaging network. 

In addition to our Helmholtz Imaging Projects, the Helmholtz Imaging team has secured external funding for third-party projects contributing their knowledge and expertise on cutting-edge imaging methodology. 

Join us in unlocking the limitless potential of Helmholtz Imaging!

Find out more about Helmholtz Imaging Project call in this summary.

Helmholtz Imaging Projects


This image shows simulation results comparing MWF mapping with single inversions of "T2-decay" data, "T2*-decay" data, and with joint inversion of both. The joint inversion is significantly closer to ground truth, as the second row shows.
 

JIMM2

3D Myelin Mapping with AI and Uncertainty Quantification

Changes in brain myelin are linked to many neurological diseases. This project aims to improve myelin water imaging, enabling more accurate and accessible diagnostics.
Decorative image explaining WeMonitor
Image: WeMonitor

WeMonitor

Satellite-based Earth observation to detect natural hazards

Satellite imagery makes it possible to detect spatio-temporal anomalies on the Earth's surface, including natural hazards such as landslides, deforestation, or the emergence of large waste dump sites. This project aims to use artificial intelligence to detect these changes at an early stage and to be able to monitor their progress.
Decorative image, HI AutoCoast
 

AutoCoast

Automatic detection of coastline change and causal linkage with natural and human drivers

Coastal erosion enhanced by climate change has become an increasing global threat, which requires rapid detection and reliable risk assessment. AutoCoast aims to provide advanced and reliable remote sensing-based AI tools to quantify coastline change rate at high-resolution and unravel the linkage between coastline change rate and natural and anthropogenic drivers at regional to global scale.

Helmholtz Foundation Model Initiative (HFMI) Projects


Microcosmos of the Ocean by Klas Ove Möller, Hereon
Image: NicoElNino on Shutterstock

AqQua

AqQua aims to build the first foundational pelagic imaging model using billions of aquatic images worldwide. These images, spanning species from plankton, will help an AI classify species, extract traits, and estimate carbon content, offering key insights into biodiversity, ecosystem health, and the biological carbon pump's role in climate regulation.
decorative image
Image: NicoElNino on Shutterstock

Synergy Unit

The Synergy Unit amplifies the Helmholtz Foundation Model Initiative's impact by developing AI principles for diverse fields. Collaborating with HFMI projects, it focuses on knowledge sharing, community building, and representation to ensure the initiative's lasting influence.
Image: NicoElNino on Shutterstock

The Human Radiome Project (THRP)

The Human Radiome Project (THRP) aims to drive a paradigm shift in medical research, providing novel insights into human health and disease through the power of AI. By integrating diverse radiological data, it seeks to enable groundbreaking advancements in personalized medicine, enhancing diagnostic accuracy and improving patient care.

UNLOCK – Benchmarking Projects


Manual microscopic biodiversity monitoring is time consuming and expert requiring thus limits the potential for biodiversity monitoring and hence to recognize risks climate and environmental changes on biodiversity related to crucial ecosystem functions.
Image: AIMBIS

AIMBIS – Artificial Intelligence for Microscopic Biodiversity Screening

Manual microscopic biodiversity monitoring is time-consuming and requires expert knowledge, limiting the potential for biodiversity monitoring, hence to recognize the impacts of climate and environmental change on crucial ecosystem functions.
Ingmar Nitze, AWI (BSIC 2021 contribution)
Image: Ingmar Nitze, AWI (BSIC 2021 contribution)

BASE: Benchmarking Agro-environmental database for Sustainable agriculture intensification

Building a BASE dataset enables robust predictions of yield potential, resource efficiency, and sustainability thresholds, driving climate resilience and sustainable agricultural intensification
Visual for UQOB; Creating a benchmark dataset for object-detection and Uncertainty Quantification (UQ) in a multi-rater setting, to address annotation variability and AI model evaluation.
 

UQOB – Uncertainty Quantification in Object-detection Benchmark

Creating a benchmark dataset for object-detection and Uncertainty Quantification (UQ) in a multi-rater setting, to address annotation variability and AI model evaluation.

Third-Party Projects


Two people standing in a computer center; COMFORT logo is integrated in the image
Image: Tim Roith

COMFORT

COMFORT aims to achieve breakthroughs in developing compact, flexible, and robust machine learning models for image, audio, and network data. In doing so, its application-oriented research program will advance the mathematical understanding of machine learning at the intersection of effectiveness and robustness.
Decorative image
 

Deep Learning based Regularization for Inverse Problems

This project aims to investigate the construction of regularization methods for ill-posed inverse problems based on deep learning and their theoretical foundations. Specific objectives include the development of robust and interpretable results, requiring the initial development of new concepts of robustness and interpretability in this context.
visual for third-party funded project UMDISTO
 

UMDISTO: Unsupervised Model Discovery

The project aims to develop novel methods for unsupervised multi-matching to map cellular-level correspondences in organisms like C. elegans.