With our Helmholtz Imaging Projects, Helmholtz Foundation Model Initiative (HFMI) and third-party funded projects, we aim to initiate cross-cutting research collaborations and identify innovative research topics in the field of imaging and data science.
Helmholtz Imaging offers a funding line of Helmholtz Imaging Projects, striving to seed collaborations between centers and across research fields. They are a strong incentive to enable interdisciplinary collaboration across the Helmholtz Association and an incubator and accelerator of the Helmholtz Imaging network.
In addition to our Helmholtz Imaging Projects, the Helmholtz Imaging team has secured external funding for third-party projects contributing their knowledge and expertise on cutting-edge imaging methodology.
Join us in unlocking the limitless potential of Helmholtz Imaging!
The next call for Helmholtz Imaging Projects is OPEN until July 30, 2025. Find out more about the project call in this summary.
Biocompatible and Efficient Nanocrystals for Shortwave Infrared Imaging
The BENIGN project aims to enable non-invasive molecular imaging with cellular resolution in vivo at depths of several millimeters. This will be achieved using light from the shortwave infrared (SWIR) range (1000-2000 nm), which has less scattering and autofluorescence compared to the visible and near-infrared spectral range. Bright and targeted imaging agents are needed to fully exploit this range. The project will develop a new approach using lanthanide-based core-shell structures that emit light in the 1500-2000 nm range.Breaking resolution limit of electron microscopy for magnetic materials
A new method will make it possible to take images of the magnetic properties of materials under the electron microscope and to correlate these properties with their atomic structure. In order to achieve high resolution, a special algorithm must be developed to compute the magnetic properties from the microscope data.Paving the way from in situ plankton image data to a Digital Twin Ocean
This project will develop a user-friendly software platform to analyze plankton images independent of the instrument with which images were collected. This will help to compare data and create a common database, which is a critical step towards an image-based ecosystem component of a “Digital Twin Ocean”.