Projects


With our Helmholtz Imaging Projects, Helmholtz Foundation Model Initiative (HFMI) and third-party funded projects, we aim to initiate cross-cutting research collaborations and identify innovative research topics in the field of imaging and data science.

Helmholtz Imaging offers a funding line of Helmholtz Imaging Projects, striving to seed collaborations between centers and across research fields. They are a strong incentive to enable interdisciplinary collaboration across the Helmholtz Association and an incubator and accelerator of the Helmholtz Imaging network. 

In addition to our Helmholtz Imaging Projects, the Helmholtz Imaging team has secured external funding for third-party projects contributing their knowledge and expertise on cutting-edge imaging methodology. 

Join us in unlocking the limitless potential of Helmholtz Imaging!

Find out more about Helmholtz Imaging Project call in this summary.

Helmholtz Imaging Projects


Image of HI Project "CLARITY"
 

CLARITY

CineMR-guided ML-driven Breathing Models for Adaptive Radiotherapy

Dose-escalated radiotherapy of lung cancers requires precise monitoring of lesions and nearby organs at risk. Current methods are able to track ultra-central lesions but neglect their deforming vicinity, risking unacceptable toxicity to aortico-pulmonary structures. AI-based anomaly detection and generative AI models can address both requirements in real-time.
 

SyNaToSe

Leveraging Cross-Domain Synergies for Efficient Machine Learning of Nanoscale Tomogram Segmentation

The aim is to develop an adaptable algorithm that can be used to perform different tasks in data and image analysis without needing to be trained with new, laboriously annotated images for each separate task.
Decorative image, HI BENIGN
 

BENIGN

Biocompatible and Efficient Nanocrystals for Shortwave Infrared Imaging

The BENIGN project aims to enable non-invasive molecular imaging with cellular resolution in vivo at depths of several millimeters. This will be achieved using light from the shortwave infrared (SWIR) range (1000-2000 nm), which has less scattering and autofluorescence compared to the visible and near-infrared spectral range. Bright and targeted imaging agents are needed to fully exploit this range. The project will develop a new approach using lanthanide-based core-shell structures that emit light in the 1500-2000 nm range.

Helmholtz Foundation Model Initiative (HFMI) Projects


Image: NicoElNino on Shutterstock

The Human Radiome Project (THRP)

The Human Radiome Project (THRP) aims to drive a paradigm shift in medical research, providing novel insights into human health and disease through the power of AI. By integrating diverse radiological data, it seeks to enable groundbreaking advancements in personalized medicine, enhancing diagnostic accuracy and improving patient care.
decorative image
Image: NicoElNino on Shutterstock

Synergy Unit

The Synergy Unit amplifies the Helmholtz Foundation Model Initiative's impact by developing AI principles for diverse fields. Collaborating with HFMI projects, it focuses on knowledge sharing, community building, and representation to ensure the initiative's lasting influence.
Microcosmos of the Ocean by Klas Ove Möller, Hereon
Image: NicoElNino on Shutterstock

AqQua

AqQua aims to build the first foundational pelagic imaging model using billions of aquatic images worldwide. These images, spanning species from plankton, will help an AI classify species, extract traits, and estimate carbon content, offering key insights into biodiversity, ecosystem health, and the biological carbon pump's role in climate regulation.

UNLOCK – Benchmarking Projects


Image: FZJ

AMOEBE: lArge-scale Multi-mOdal Microbial livE-cell imaging BEnchmark

Building a large-scale, FAIR benchmark for AI-driven analysis of microbial communities using time-lapse microscopy to advance understanding of microbial dynamics, ecosystem stability, and their role in health and biotechnology.
Visusal for SCHEMA;Metastases represent a significant exacerbation of tumor severity. If one could predict the likelihood of tumors metastasizing, this could inform treatment decisions to avoid or delay this outcome. SCHEMA develops a benchmark dataset of primary tumor samples and metadata on whether the tumor has metastasized at different time points after sampling. With this dataset, a challenge for machine learning scientists will be defined to build prognostic models for likelihood of tumors metastasizing, promoting innovation in prognostic modeling for a clinically relevant task.
Image: Hellmut Augustin, DKFZ (BSIC 2021 contribution)

SCHEMA – profiling Spatial Cancer HEterogeneity across modalities to benchmark Metastasis risk prediction

SCHEMA creates a benchmark dataset linking tumor samples with metastasis outcomes to enable machine-learning models that predict metastasis risk and support clinical decision-making.
Manual microscopic biodiversity monitoring is time consuming and expert requiring thus limits the potential for biodiversity monitoring and hence to recognize risks climate and environmental changes on biodiversity related to crucial ecosystem functions.
Image: AIMBIS

AIMBIS – Artificial Intelligence for Microscopic Biodiversity Screening

Manual microscopic biodiversity monitoring is time-consuming and requires expert knowledge, limiting the potential for biodiversity monitoring, hence to recognize the impacts of climate and environmental change on crucial ecosystem functions.

Third-Party Projects


Two people standing in a computer center; COMFORT logo is integrated in the image
Image: Tim Roith

COMFORT

COMFORT aims to achieve breakthroughs in developing compact, flexible, and robust machine learning models for image, audio, and network data. In doing so, its application-oriented research program will advance the mathematical understanding of machine learning at the intersection of effectiveness and robustness.
BSIC 2023 contribution by Sebastian Dupraz (AG Bradke), DZNE; title: Stranger in the mirror
Image: Sebastian Dupraz (AG Bradke), DZNE

Spatio-temporal inverse approaches for EEG/MEG reconstruction of neural networks in the human brain

This project aims to develop novel methods for reconstructing brain activity from dynamic EEG and MEG measurements. By using realistic, individualized finite element models and advanced regularization techniques, including machine learning, we seek to solve this inverse problem in real patient settings, ultimately improving the diagnosis and treatment of medication-resistant focal epilepsy.
Decorative image
 

Foundations of Supervised Deep Learning for Inverse Problems

Recently, deep learning methods have excelled at various data processing tasks including the solution of ill-posed inverse problems. The goal of this project is to contribute to the theoretical foundation for truly understanding deep networks as regularization techniques which can reestablish a continuous dependence of the solution on the data.