Projects


With our Helmholtz Imaging Projects, Helmholtz Foundation Model Initiative (HFMI) and third-party funded projects, we aim to initiate cross-cutting research collaborations and identify innovative research topics in the field of imaging and data science.

Helmholtz Imaging offers a funding line of Helmholtz Imaging Projects, striving to seed collaborations between centers and across research fields. They are a strong incentive to enable interdisciplinary collaboration across the Helmholtz Association and an incubator and accelerator of the Helmholtz Imaging network. 

In addition to our Helmholtz Imaging Projects, the Helmholtz Imaging team has secured external funding for third-party projects contributing their knowledge and expertise on cutting-edge imaging methodology. 

Join us in unlocking the limitless potential of Helmholtz Imaging!

Find out more about Helmholtz Imaging Project call in this summary.

Helmholtz Imaging Projects


Visual for HI Project "FAST EMI"
 

Fast-EMI

Deep-learning assisted fast in situ 4D electron microscope imaging

A novel imaging approach combining electron microscopy and deep learning has been established. This method enables adaptive tracking of atomic defects, accelerating material development for the energy transition.
Decorative image, HI EMSIG
Image: Johannes Seiffarth, FZ Jülich

EMSIG

Event-driven Microscopy for Smart Microfluidic Single-cell Analysis

Microfluidic live-cell imaging (MLCI) unlocks spatio-temporal insights into population heterogeneity emerging from a single cell. EMSIG brings smart live-event detection capabilities to MLCI to facilitate the adaptive optimization of biological event resolution and autonomously counteracting deteriorating image qualities.
Decorative image, HI AIOrganoid
Image: Xun Xu, Hereon

AIOrganoid

Artificial Intelligence Assisted-Imaging for Creating High-yield, High-fidelity Human Lung Organoid

AIOrganoid will apply cutting-edge imaging techniques and develop novel AI-based solutions to facilitate human lung organoid formation with high yield and fidelity, bridging the gap between cell biology and computational imaging.

Helmholtz Foundation Model Initiative (HFMI) Projects


Microcosmos of the Ocean by Klas Ove Möller, Hereon
Image: NicoElNino on Shutterstock

AqQua

AqQua aims to build the first foundational pelagic imaging model using billions of aquatic images worldwide. These images, spanning species from plankton, will help an AI classify species, extract traits, and estimate carbon content, offering key insights into biodiversity, ecosystem health, and the biological carbon pump's role in climate regulation.
decorative image
Image: NicoElNino on Shutterstock

Synergy Unit

The Synergy Unit amplifies the Helmholtz Foundation Model Initiative's impact by developing AI principles for diverse fields. Collaborating with HFMI projects, it focuses on knowledge sharing, community building, and representation to ensure the initiative's lasting influence.
Image: NicoElNino on Shutterstock

The Human Radiome Project (THRP)

The Human Radiome Project (THRP) aims to drive a paradigm shift in medical research, providing novel insights into human health and disease through the power of AI. By integrating diverse radiological data, it seeks to enable groundbreaking advancements in personalized medicine, enhancing diagnostic accuracy and improving patient care.

UNLOCK – Benchmarking Projects


Visual for UNLOCK project TIMELY
Image: Scidraw

TIMELY: Time-series Integration across Modalities for Evaluation of Latent DYnamics

TIMELY provides the first comprehensive benchmark for multimodal biological time-series data, addressing the lack of standardized, high-quality datasets for modeling complex dynamical systems. It fosters the development of statistical and foundation models tailored to the analytical needs of research in biomedicine and neuroscience.
Visual for GRIDMARK; Transforming energy systems toward climate neutrality: Distribution grids have the potential to be catalysts for the energy transition. Unfortunately, most Distribution System Operators lack the resources to fully monitor their systems. Therefore, there is an urgent need for more high-quality data, particularly to develop and test machine learning models.
 

GRIDMARK – Generating Reproducible Insights through Data Benchmarking for AI in Energy Systems

Transforming energy systems toward climate neutrality: Distribution grids have the potential to be catalysts for the energy transition. Unfortunately, most Distribution System Operators lack the resources to fully monitor their systems. Therefore, there is an urgent need for more high-quality data, particularly to develop and test machine learning models.
Ingmar Nitze, AWI (BSIC 2021 contribution)
Image: Ingmar Nitze, AWI (BSIC 2021 contribution)

BASE: Benchmarking Agro-environmental database for Sustainable agriculture intensification

Building a BASE dataset enables robust predictions of yield potential, resource efficiency, and sustainability thresholds, driving climate resilience and sustainable agricultural intensification

Third-Party Projects


Decorative image
 

SFB Transregio 154 – C06: Transport metrics for analysis and optimization of network problems

SFB TRR 154 is a project of the German Research Foundation (DFG) and combines integer-continuous methods, model adaptation, and numerical simulation, to analyze and optimize gas markets, infrastructure, and control of networks. The third funding period specifically focuses on the transition from natural gas to hydrogen.
Decorative image
 

Bayesian Computations for Large-scale (Nonlinear) Inverse Problems in Imaging

During research stays with the collaborating group at Caltech, we aim to investigate various aspects of statistical inverse problems. This includes inquiries into particle- and PDE-based sampling methods, as well as robust regularization using neural networks.
BSIC 2023 contribution by Sebastian Dupraz (AG Bradke), DZNE; title: Stranger in the mirror
Image: Sebastian Dupraz (AG Bradke), DZNE

Spatio-temporal inverse approaches for EEG/MEG reconstruction of neural networks in the human brain

This project aims to develop novel methods for reconstructing brain activity from dynamic EEG and MEG measurements. By using realistic, individualized finite element models and advanced regularization techniques, including machine learning, we seek to solve this inverse problem in real patient settings, ultimately improving the diagnosis and treatment of medication-resistant focal epilepsy.